1. A car slows from $30 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 5 seconds. How far does it go during that time?
2. A VW beetle can accelerate from 0 to $40 \mathrm{~m} / \mathrm{s}$ in 8.2 seconds. How far does it go while doing so?
3. A student slides a salt shaker across a dining room table. The salt shaker decelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$. How fast should he slide the shaker so that it goes exactly across the 6 meter wide table?
4. A ball thrown upward at $12 \mathrm{~m} / \mathrm{s}$ from the roof of a building misses the edge and strikes the ground below at $26.3 \mathrm{~m} / \mathrm{s}$. How high is the building?
5. A bus goes a distance of 250 m while braking from $30 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ at constant acceleration. What was its constant braking acceleration?
6. A champagne bottle is held so that the cork is 1.2 meters above the floor. The cork pops off, rises vertically, and hits the floor 1.4 seconds later. What was the cork's maximum height above the floor?
7. A golf cart has an acceleration of $0.4 \mathrm{~m} / \mathrm{s}^{2}$. What is its velocity after going 10 meters from rest?
8. An amusement park ride initially travels at a horizontal velocity of 30 m / s. If is continually decelerates at $2.7 \mathrm{~m} / \mathrm{s}^{2}$, how long does it take to reach the operator standing 120 meters away?
9. A bus has a maximum acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$, a maximum speed of 20 m / s, and a maximum deceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. What is the shortest time in which it can cover the 270 meters between stops? (Hint: draw a vgraph of the motion before attempting to solve. Use the graph to give you ideas on how to proceed.)
10. A sprinter accelerates evenly from rest until her speed reaches $12 \mathrm{~m} / \mathrm{s}$. She then continues running at $12 \mathrm{~m} / \mathrm{s}$ until she finishes the 100 m race. The total time for the race is 11 seconds. a) Sketch a v vs t graph for the sprinter. b) How long did it take her to reach her maximum speed?
11. An orangutan throws a coconut vertically upward at the foot of a cliff 60 meters high while his mate simultaneously drops another coconut from the top of a cliff. The two coconuts collide at a height of 42 meters. How fast was the coconut thrown upward from the bottom of the cliff?

Answers on next page

Answers:

1. 100 m
2. 164 m
3. $6.93 \mathrm{~m} / \mathrm{s}$
4. 27.4 m
5. $-1 \mathrm{~m} / \mathrm{s}^{2}$
6. First you need to find the initial velocity of the cork. This turns out to be $+6.14 \mathrm{~m} / \mathrm{s}$. Given this you can find the time it takes the cork to reach its peak $(0.614 \mathrm{sec})$. The peak is therefore 1.88 m above the initial starting point or 3.08 m above the floor.
7. $2.83 \mathrm{~m} / \mathrm{s}$
8. 5.23 sec
9. Break the trip into three parts. The initial acceleration takes 4 seconds. The final deceleration takes 2 seconds. These two "legs" cover 40 meters and 20 meters respectively. Therefore the middle portion of the trip (210 m) will take 10.5 (@ $20 \mathrm{~m} / \mathrm{s}$) and so the total trip is 16.5 seconds.
10.5 .33 sec
$11.31 .61 \mathrm{~m} / \mathrm{s}(\mathrm{up}) .$. the time for the top ball to fall 18 m from rest is 1.9 sec . In order for the second ball to move upward 42 m in the same time, it turns out that the initial upward velocity must have been $31.61 \mathrm{~m} / \mathrm{s}$. Why? Call the initial speed v_{0}. The speed at impact is v_{f} which equals $v_{o}-10 t$. Thus $v_{\text {ave }}$ must be $v_{o}-5 t$ (Do you see why?). Use $\Delta s=v_{\text {ave }} \Delta t=\left(v_{o}-5 t\right) t$ to solve for v_{o}.
