Position, Velocity, Acceleration vs. Time Plots (1-D)

Questions to ask:

Starting from v vs. \mathbf{t}

For velocity graph:

1. Which way is the object moving?

- Forward $=>\mathrm{v}>0$
- Backward $=>\mathrm{v}<0$

2. Is it speeding up, slowing down, or moving at constant speed?

- speeding up $=>$ line getting further from 0
- \quad slowing down $=>$ line getting closer to 0
- constant speed $=>$ horizontal line

For acceleration graph:

1. What is the slope of the velocity time graph?

- Remember that this is piecewise constant in Physics 1 (a simplifying assumption)

For the position graph:

1. What is my starting (s_{0}) value? (Must be given)
2. Which way is the object moving?

- forward $=>\mathrm{s}$ should be getting more positive (s values increasing)
- backward $=>$ s should be getting more negative (s values decreasing)
- no $=>\mathrm{s}$ is constant (horizontal line)

3. Should the line be curved or straight?

- Is v constant? => straight
- Is $|\mathrm{v}|$ decreasing? (slowing down) $=>$ curved towards horizontal
- Is $|\mathrm{v}|$ increasing? (speeding up) $=>$ curved away from horizontal
- Remember that the s vs. t plot will always produce a smooth curve

Starting from s vs. t

For the velocity graph:

1. What is the slope of the position graph?

- Remember that our simplifying assumption for the course that all accelerations are constant means that v vs. t will consist of one or more straight lines

For the acceleration graph:

1. What is the slope of the velocity time graph?

- Remember that this is piecewise constant in Physics 1 (a simplifying assumption)

Starting from a vs. t

For the velocity graph:

1. What is my starting $\left(\mathrm{v}_{0}\right)$ value? (Must be given)
2. Given this starting v , is the object speeding up or slowing down?

- Remember that if v and a have the same direction (sign) then the object is speeding up and if they have opposite direction (sign), then it is slowing down.
- Remember that acceleration gives the slope of the velocity vs. time graph.
- A positively sloped line looks like /
- A negatively sloped line looks like \backslash
- Remember that our simplifying assumption for the course that all accelerations are constant means that v vs. t will consist of one or more straight lines

For the position graph:

1. What is my starting (s_{0}) value? (Must be given)
2. Which way is the object moving?

- forward $=>\mathrm{s}$ should be getting more positive (s values increasing)
- backward $=>\mathrm{s}$ should be getting more negative (s values decreasing)
- no $=>\mathrm{s}$ is constant (horizontal line)

3. Should the line be curved or straight?

- Is v constant? => straight
- Is $|\mathrm{v}|$ decreasing? (slowing down) $=>$ curved towards horizontal
- Is $|\mathrm{v}|$ increasing? (speeding up) $=>$ curved away from horizontal
- Remember that the s vs. t plot will always produce a smooth curve

