Physics 'Counting' Worksheet

(9/24/04)
By using counting techniques, compute (or estimate where computation by counting is difficult) the answers to the following questions:

1. A stone is dropped from rest from the edge of a very high cliff.
a. What is its speed 12 seconds later?
b. What is its acceleration 4 seconds later?
c. How far will it fall in 8 seconds?
d. How far does it fall in its third second of flight?
e. How far does it fall in 7.3 seconds?
2. A car accelerates at $6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ from rest. How long does it take to reach $27 \mathrm{~m} / \mathrm{s}$ (approximate highway speed)? How far does it travel in that time?
3. A runner travelling at $10 \mathrm{~m} / \mathrm{s}$ begins to slow at a constant rate of $-1 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. How far will he travel while slowing to rest?
4. A car slows from $30 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 5 second s . How far does it travel during that time? What is its constant acceleration?
5. A ball is dropped on a planet with an acceleration of gravity of $4 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Fill in the chart below showing the speed of the ball and the total distance the ball has fallen versus time for the first 8 seconds of its fall.

Time (seconds)	Speed (m/s)	Position (meters)
0	0	0
1		
2		
3		
4		
5		
6		
7		
8		

