Kinematics [H orizontal]

(9/18/03)

1) Unit Conversions: A speed can be expressed as any displacement unit divided by any time unit, regardless of how arcane each unit is. An object is found to be moving along at 1 furlong/ fortnight. First, find out (without faculty assistance) how large each unit is. Is a furlong/ fortnight a relatively fast or slow speed? Convert 1 furlong/ fortnight into $\mathrm{cm} / \mathrm{sec}$ using dimensional analysis.
2) World class sprinters run 100 meters in approximately 9.9 seconds, milers run 1 mile (1.6 km) in approximately 3.8 minutes, marathoners run 26.2 miles (42 km) in 2.25 hours, and race walkers complete 50 km in 3.6 hours. Compare their average speeds by converting all four speeds into meters/ sec.
3) Average speed and Frame-of-Reference: A girl on a motorcycledrives west at an average speed of $15 \mathrm{~m} / \mathrm{s}$ while a truck drives east at an average speed of $35 \mathrm{~m} / \mathrm{s}$. If they both started at the same place at the same time how far apart are they after 2 minutes? What is their average speed relative to each other?
4) A verage Speed: When I travel to work every morning I travel for 10 minutes at an average speed of 20 meters/ sec for the next 35 minutes at an average speed of $30 \mathrm{~m} / \mathrm{s}$. What is my average speed for the entire trip? (For your information, $30 \mathrm{~m} / \mathrm{s}$ is just a bit over 60 mph)
5) Average Speed: A man travels 500m at an average speed of $20 \mathrm{~m} / \mathrm{s}$ and 200 m at an average speed of $5 \mathrm{~m} / \mathrm{s}$. How long would it take the man to travel the remaining 1300 m of his trip if he wants to average $25 \mathrm{~m} / \mathrm{s}$ for the entiretrip (overall)?
6) Velocity graphs: A bus uniformly increases its speed from 0 to $10 \mathrm{~m} / \sin 5$ seconds, proceeds at a constant speed (of $10 \mathrm{~m} / \mathrm{s}$) for 20 seconds and then uniformly slows down from $10 \mathrm{~m} / \mathrm{s}$ to a stop in 10 seconds. Draw a graph showing the speed of the bus as a function of time. Estimate how far the bus went in those 35 seconds.
7) A verage speed: A student walks from the Physics lab to the middle school wing and back again. The student averages $6 \mathrm{~m} /$ s on her way to the middle school (trotting!) and $2 \mathrm{~m} /$ son her way back. Is her average speed for the two-way trip less than $4 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$ or greater than $4 \mathrm{~m} / \mathrm{s}$? Write a clear, careful explanation of your reasoning. CHALLENGE-Calculate (exactly) her average speed (this can be done!).
