This is a right triangle.

$$
\begin{aligned}
& \vartheta+\varphi=90^{\circ} \\
& \vartheta=\text { "theta" (also } \theta) \\
& \varphi=\text { "phi" (also } \phi)
\end{aligned}
$$

We will always label the angle that we are interested in finding ϑ, so forget φ. Label the side across from the angle ϑ "opp" for opposite. Label the side next to ϑ "adj" for adjacent. Label the side across from the right angle "hyp" for hypotenuse.

Three trigonometric functions are all that we need: sine, cosine, and tangent.

$$
\sin \vartheta=\frac{o p p}{h y p} \quad \cos \vartheta=\frac{a d j}{h y p} \quad \tan \vartheta=\frac{o p p}{a d j}
$$

Know this:
SOH - CAH - TOA

Since any two right triangles with the same angles are similar, the sine, cosine, and tangent do not depend on the size of the triangle.

Here is a practical application:

Suppose that you have the velocity vector pictured below.

V_{x}

Suppose that you know V and wish to calculate V_{y}.
$\frac{V_{y}}{V}=\frac{o p p}{h y p}=\sin \vartheta ; \quad \mathrm{V}_{\mathrm{v}}=\mathrm{V} \sin \vartheta$
and, by the same reasoning,
$\frac{V_{x}}{V}=\frac{a d j}{h y p}=\cos \vartheta ; \quad \mathrm{V}_{\mathrm{x}}=\mathrm{V} \cos \vartheta$

Important angles:

Angle	$\sin \vartheta$	$\cos \vartheta$	$\tan \vartheta$
0°	0	1	0
22.62°	$\frac{5}{13} \approx 0.3846$	$\frac{12}{13} \approx 0.9231$	$\frac{5}{12} \approx 0.4167$
30°	$\frac{1}{2}=0.5$	$\frac{\sqrt{3}}{2} \approx 0.8660$	$\frac{\sqrt{3}}{3} \approx 0.5774$
36.87°	$\frac{3}{5}=0.6$	$\frac{4}{5}=0.8$	$\frac{3}{4}=0.75$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{5}=0.6$
53.13°	$\frac{4}{5}=0.8$	$\frac{1}{2}=0.5$	$\frac{4}{3} \approx 1.333$
60°	$\frac{\sqrt{3}}{2} \approx 0.8660$	$\frac{5}{13} \approx 0.3846$	$\frac{\sqrt{3}}{} \approx 1.732$
67.38°	$\frac{12}{13} \approx 0.9231$	0	$\frac{12}{5}=2.4$
90°	1	-1	u / d
180°	0	0	0
270°	-1	u / d	

Note: $\sin \vartheta$ and $\cos \vartheta$ are always ≤ 1 !

