1. How much tension must a rope withstand if it is used to accelerate a 1050 kilogram car horizontally at $1.20 \mathrm{~m} / \mathrm{s}^{2}$? Ignore friction. 1260 N
2. What average force is required to stop an 1100 kilogram car in 8.0 seconds if it is traveling at $90 \mathrm{~km} / \mathrm{hr}$? 3437.5 N
3. How much tension must a rope withstand if it is used to accelerate a 1200 kilogram crate vertically upwards at $0.80 \mathrm{~m} / \mathrm{s}^{2}$? Ignore friction. $\quad 12,960 \mathrm{~N}$
4. A 10 -kilogram bucket is lowered by a rope in which there is 63 N of tension. What is the acceleration of the bucket? $\quad 3.7 \mathrm{~m} / \mathrm{s}^{2}$
5. The cable supporting a 2100 -kilogram elevator has a maximum strength of $21,750 \mathrm{~N}$. What maximum upward acceleration can it give the elevator without breaking? $\quad 0.357 \mathrm{~m} / \mathrm{s}^{2}$
6. According to a simplified model of a mammalian heart, at each pulse, approximately 20 g of blood is accelerated from $0.25 \mathrm{~m} / \mathrm{s}$ to $0.35 \mathrm{~m} / \mathrm{s}$ during a period of 0.10 seconds. What is the magnitude of the force being exerted by the heart muscle? $\quad 0.02 \mathrm{~N}$
7. A fisherman in a boat is using a "10-pound test" fishing line. This means that the line can exert a force of 45 N without breaking ($1 \mathrm{lb}=4.45 \mathrm{~N}$). (A) How heavy a fish can the fisherman land if he pulls the fish up vertically at a constant speed? (B) If he accelerates the fish upwards at $2.0 \mathrm{~m} / \mathrm{s}^{2}$, what maximum weight fish can he land?
(A) 45 N
(B) 37.5 N
8. A wet bar of soap ($\mathrm{m}=150$ grams), starting from rest, slides without friction down a ramp 2.0 meters long inclined at 7.3°. How long does it take to reach the bottom? How would this change if the soap's mass were 250 grams? $\quad 1.77$ s, no change
9. At the instant a race began, a 65 -kilogram sprinter was found to exert a force of 800 N on the starting block at a 22 angle with respect to the ground. (A) What was the horizontal acceleration of the sprinter? (B) If the force was exerted for 0.38 s , with what speed did the sprinter leave the starting block?
(A) $11.4 \mathrm{~m} / \mathrm{s}^{2}$
(B) $4.34 \mathrm{~m} / \mathrm{s}$
10. One 3.0 kilogram paint bucket is hanging by a massless cord from another 3.0 kilogram paint bucket, also hanging by a massless cord. (A) If the buckets are at rest, what is the tension in each of the cords? (B) If the two buckets are pulled upward with an acceleration of $1.60 \mathrm{~m} / \mathrm{s}^{2}$ by the upper cord, calculate the tension in each cord. (A) 30 N (bottom), 60 N (top) \quad (B) 34.8 N (bottom), 69.6 (top)
11. A mover pushes a couch with a force of 520 newtons horizontally. Assuming the couch starts at rest, is that enough to move it? Assume that the couch has a mass of 150 kilograms, a $\mu_{\mathrm{s}}=0.60$ and a $\mu_{\mathrm{k}}=$ 0.30. No.
12. A student applies a horizontal force on a refrigerator. The refrigerator has a mass of 75 kilograms, and coefficients of friction between it and the floor are $\mu_{\mathrm{s}}=0.50$ and $\mu_{\mathrm{k}}=0.40$. (A) What force is needed to get the refrigerator moving? (B) What force is needed to keep it going at a constant velocity?
(A) 375 N
(B) 300 N
13. A box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is 0.20 and the push imparts an initial velocity of $4.0 \mathrm{~m} / \mathrm{s}$? $\quad 4 \mathrm{~m}$
14. Police lieutenants, examining the scene of an accident involving two cars, measure the skid marks of one of the cars, which nearly came to a stop before colliding to be 80 m long. The coefficient of kinetic friction between rubber and the pavement is about 0.80 . Estimate the initial speed of the car assuming a level road. $\quad 35.8 \mathrm{~m} / \mathrm{s}$
