STATIC EQUILIBRIUM - Bars \& Cables-KEY

$\Sigma F=0 \& \Sigma \tau=0$
[1] Find the tension in the cable and both the horizontal and vertical components that the hinge supplies to the bar (remember direction).

Note: The bar is $20 \mathrm{~kg} \& 10$ meters long

$$
\begin{aligned}
& \mathrm{T}=500 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{Hx}}=300 \mathrm{~N} \text { right } \\
& \mathrm{F}_{\mathrm{Hy}}=100 \mathrm{~N} \text { up }
\end{aligned}
$$

[2] Find the tension in the cable and both the horizontal and vertical components that the hinge supplies to the bar (remember direction).

Note: The bar is $20 \mathrm{~kg} \& 10$ meters long

$$
\begin{aligned}
& \mathrm{T}=8331 / 3 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{Hx}}=6662 / 3 \mathrm{~N} \text { right } \\
& \mathrm{F}_{\mathrm{Hy}}=0 \mathrm{~N}
\end{aligned}
$$

STATIC EQUILIBRIUM - Bars \& Cables-KEY

$\Sigma F=0 \quad \& \quad \Sigma \tau=0$
[3] Find the mass of the box labeled " m " and both the horizontal and vertical components that the hinge supplies to the bar (remember direction).

Note: The bar is 50 kg

[4] Find the minimum coefficient of friction (μ) required between the end of the bar and the wall in order to maintain static equilibrium.

Note: The bar is 600 N \& 8 meters long.
Hint: normal force is like horizontal component of a hinge friction needed is like vertical component of a hinge

$$
\begin{aligned}
& \mathrm{F}_{\text {Norm }}=400 \mathrm{~N} \text { right } \\
& \mathrm{F}_{\text {friction }}=300 \mathrm{~N} \text { up } \\
& \mu_{\min }=0.75
\end{aligned}
$$

