W4.06

STATIC EQUILIBRIUM – Ladders

 $\Sigma F = 0 \& \Sigma \tau = 0$

Note: all walls are frictionless (μ =0) and all floors are rough (μ ≠0), unless otherwise indicated.

[3] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 400 N and $\mu_{\text{Floor}}=0.4$, how far up the ladder could a 600 N person climb before the ladder starts to slip?

[4] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 200 N and the floor is frictionless, what is the tension in the rope (attached to the middle of the ladder) when a 600 N person stands at the top?

W4.06

STATIC EQUILIBRIUM – Ladders KEY

 $\Sigma F = 0 \& \Sigma T = 0$

Note: all walls are frictionless (μ =0) and all floors are rough (μ ≠0), unless otherwise indicated.

[3] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 400 N and $\mu_{\text{Floor}}=0.4$, how far up the ladder could a 600 N person climb before the ladder starts to slip?

[4] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 200 N and the floor is frictionless, what is the tension in the rope (attached to the middle of the ladder) when a 600 N person stands at the top?

