W4.06

STATIC EQUILIBRIUM - Ladders

$\Sigma F=0 \quad \& \quad \Sigma \tau=0$
Note: all walls are frictionless $(\mu=0)$ and all floors are rough $(\mu \neq 0)$, unless otherwise indicated.
[3] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 400 N and $\mu_{\text {Floor }}=0.4$, how far up the ladder could a 600 N person climb before the ladder starts to slip?

$\mu \neq 0$
[4] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 200 N and the floor is frictionless, what is the tension in the rope (attached to the middle of the ladder) when a 600 N person stands at the top?

W4.06

STATIC EQUILIBRIUM - Ladders KEY
 $\Sigma F=0 \& \Sigma \tau=0$

Note: all walls are frictionless $(\mu=0)$ and all floors are rough $(\mu \neq 0)$, unless otherwise indicated.
[3] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 400 N and $\mu_{\text {Floor }}=0.4$, how far up the ladder could a 600 N person climb before the ladder starts to slip?

$\mu \neq 0$
[4] A 10 meter long ladder leans against the wall as shown. If the ladder weighs 200 N and the floor is frictionless, what is the tension in the rope (attached to the middle of the ladder) when a 600 N person stands at the top?

$$
\mathrm{T}=1,050 \mathrm{~N}
$$

