W4.07H

STATIC EQUILIBRIUM - Ladders [Hard]

$\Sigma F=0 \quad \& \quad \Sigma \boldsymbol{\tau}=0$
Note: all walls are frictionless $(\mu=0)$ and all floors are rough $(\mu \neq 0)$, unless otherwise indicated.
[5] A 6-meter long ladder leans against a frictionless curved edge that only has the ability to push perpendicularly on the ladder as shown. If the ladder weighs 100 N , what is the minimum coefficient of friction between the floor and the ladder in order for the ladder to remain stable?

[6] Two ladders, each 15 meters long and 200 N , are hinged at the top as shown. A rope, tied 5 meters up from the foot of each ladder, prevents the ladders from "doing the splits". A $1,000 \mathrm{~N}$ box is suspended 10 meters up the left-hand ladder. Find the normal force acting on the base of each ladder and the tension in the rope.

STATIC EQUILIBRIUM - Ladders [Hard] - KEY
 $\Sigma F=0 \& \Sigma \tau=0$

Note: all walls are frictionless $(\mu=0)$ and all floors are rough $(\mu \neq 0)$, unless otherwise indicated.
[5] A 6-meter long ladder leans against a frictionless curved edge that only has the ability to push perpendicularly on the ladder as shown. If the ladder weighs 100 N , what is the minimum coefficient of friction between the floor and the ladder in order for the ladder to remain stable?

[6] Two ladders, each 15 meters long and 200 N , are hinged at the top as shown. A rope, tied 5 meters up from the foot of each ladder, prevents the ladders from "doing the splits". A $1,000 \mathrm{~N}$ box is suspended 10 meters up the left-hand ladder. Find the normal force acting on the base of each ladder and the tension in the rope.

