Circular Motion

W5.03

- 1. For each of the following situations, give the source of the centripetal force. Be precise. For example, if only one component of a force supplies the centripetal force, indicate that component.
 - a. a stone on a rope swung in a horizontal circle in deep space.
 - b. a bobsled rounding a frictionless, banked turn.
 - c. a satellite in Earth orbit.
 - d. a ball swung in a conical pendulum.
 - e. a ball on a rope swung in a vertical circle at the top point with tension = 0.
 - f. a car rounding a level turn on the highway.
- 2. A 1 kg stone is whirled in a horizontal circle that is 2 m in radius by a string which breaks if the tension exceeds 500 N.
 - a. What is the maximum speed of the stone?
 - b. What is the frequency at this speed?
 - c. What is the magnitude and direction of the centripetal acceleration at this speed?
- 3. A highway curve is designed for a speed of 30 m/s (~65 mph) and is level. If the curve has a radius of 400 m, what μ must the car's tires have with the road in order for the car to negotiate the turn?
- 4. An astronaut in training is seated at the end of a horizontal arm 7.0 m long. How many revolutions per second must the arm make for the astronaut to experience a horizontal acceleration of 4.0g.
- 5. What is the centripetal force needed to keep a 3.0 kg mass moving in a circle of radius 0.50 m at a speed of 8.0 m/s?
- 6. A string 1.0 m long breaks when the tension is 100 N. What is the greatest speed at which it can be used to whirl a 1.0 kg stone? (Neglect the gravitational pull of the earth on the stone.)
- 7. A 2000 kg car is rounding a curve of radius 200 m on a level road. If the coefficient of static friction between the tires and the road surface is 0.2, what is the highest speed at which the car can round the curve?
- 8. A dime is placed 10 cm from the center of a record. The coefficient of static friction between the coin the record is 0.30. Will the coin remain on the turn table when the record turns at $33^{1}/_{3}$ rpm? At 78 rpm?

- 9. A 500 g model airplane flies around a horizontal circle while attached to a wire 10 m long that is at an angle of 36.87° above the ground. If the airplane makes one revolution every 5.0 s, what is the tension in the wire? (HINT: What <u>component</u> of the tension in the wire causes the plane to fly in a horizontal circle? What is the magnitude of this component?)
- 10. A tether-ball pole is spun at 40 rpm with a 2 kg ball at the end of a 1 m rope. What angle does the rope make with the pole?
- 11. A 2 kg ball is swung in a vertical circle at the end of a 3 m string. At the "3 o'clock" position on the way down, the tension in the rope is found to be 96 N.
 - a. What is the speed of the ball at this point?
 - b. Using energy methods find the speed of the ball at the bottom of the circle.
 - c. What is the tension in the rope at the bottom of the circle?
 - d. Mathematically prove whether or not the ball reaches the top of the circle.
- 12. A bucket of water is whirled in a vertical circle fast enough to keep the water from spilling out. By estimating the length of a person's arm, find
 - a. the minimum speed of the bucket in the circle.
 - b. the maximum force of the arm on the bucket if the bucket's mass in 10 kg.

ANSWERS:

- 1. Tension a.
 - b. F_{Nx}
 - $\begin{array}{c} F_g\\ T_x\end{array}$ c.
 - d.
 - Mg e. f. $F_{\rm f}$
- 2. 31.6 m/s a.
 - 2.52 Hz (rps) b.
 - 500 m/s^2 c.
- 3. $\mu = 0.225$
- f = 0.38 Hz (T = 2.63 sec)4.
- $F_c = 384 N$ 5.
- 6. v = 10 m/s
- 7. $v = 20 \text{ m/s} (\approx 43 \text{ mph})$
- With a $\mu = 0.3$, the max frequency is 0.87 Hz (52.3 rpm). Therefore, dime is OK at 33 $^{1}/_{3}$ rpm and even at 8. 45 rpm but not at 78 rpm.
- Tension = 7.9 N9.
- $\theta = 55.3^{\circ}$. Remember the x-component of the tension in the rope (T sin θ) supplies the centripetal force. 10. The y-component of the tension (T $\cos \theta$) is equal to the weight of the ball. But don't forget that the radius of the circle isn't 1 m, it's R sin θ .
- 11. v = 12 m/sa.
 - v = 14.3 m/sb.
 - c. $T_{bottom} = 156 \text{ N}$
 - $v_{crit} = 5.48$ m/s; $v_{top} = 9.17$ m/s by energy methods which is greater than the critical speed. d.
- 12. $v_{min} = v_{crit} = 3.16 \text{ m/s}$ a.
 - $F_{max} = F_{bottom} = W + F_c = 600 \text{ N}.$ Note: $v_{bottom} = \sqrt{5gR}$ if $v_{top} = \sqrt{gR}$ (by energy methods). b.