W5.06

1. The average orbital radius of Jupiter around the Sun is $7.78 \times 10^{11} \mathrm{~m}$. Given that the mass of the Sun is $2 \times 10^{30} \mathrm{~kg}$, determine the orbital period of Jupiter (in years).
2. Determine the acceleration of gravity on Venus given that the radius of Venus is 95% that of Earth and that the mass of Venus is 81% that of Earth. (Don't use your planetary data table! Use $g_{E}=10 \mathrm{~m} / \mathrm{s}^{2}$.)
3. A highway turn has a radius of 50 m . The turn is not banked and is designed so that the maximum speed for a car should be approximately $20 \mathrm{~m} / \mathrm{s}$. What is the minimum coefficient of friction that is necessary for the car to negotiate this turn?
4. A highway turn of radius 750 m is designed for a speed of $65 \mathrm{mph}(29 \mathrm{~m} / \mathrm{s})$. What is the angle of the bank? (Hint: designed for means that no friction would be needed at the design speed. You will need a little trigonometry.)
5. A 0.2 kg yo-yo is spun in a vertical circle at the end of a 2 m string.
a. What is the speed of the yo-yo if the tension in the string at the top of the circle is 8 N ?
b. If the speed of the yo-yo at the bottom of the circle is $13.4 \mathrm{~m} / \mathrm{s}$, determine the tension in the string at the bottom of the circle.
c. The same yo-yo is used as a conical pendulum. The string is found to make a 60° angle with the vertical. Find the speed of the yo-yo, and the tension in the string.

Answers:

1. 11.8 yr
2. $9.0 \mathrm{~m} / \mathrm{s}^{2}$
3. 0.8
4. 6.4°
5. a. $10 \mathrm{~m} / \mathrm{s}$
b. 20 N
c. $5.48 \mathrm{~m} / \mathrm{s} ; 4 \mathrm{~N}$
