Energy

Systems Solve Using Energy Methods

- 1. The system above is released from rest.
 - a. How much GPE did the suspended mass "lose", the instant the suspended mass has fallen 2.5 meters?
 - b. Where did the GPE "lost" go? Note: since no friction or air resistance-no energy taken away from the system.
 - c. Which block has a greater speed, the instant the suspended mass has fallen 2.5 meters?
 - d. What is the speed of the block on the surface, the instant the suspended mass has fallen 2.5 meters?

Energy-KEY

Systems Solve Using Energy Methods

- 1. The system above is released from rest.
 - a. How much GPE did the suspended mass "lose", the instant the suspended mass has fallen 2.5 meters?

100 joules

b. Where did the GPE "lost" go? Note: since no friction or air resistance-no energy taken away from the system.

Changed into KE

c. Which block has a greater speed, the instance the suspended mass has fallen 2.5 meters?

Same speed

d. What is the speed of the block on the surface, the instance the suspended mass has fallen 2.5 meters?

5 m/s