
W6.06c

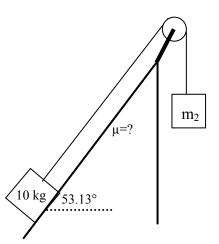
<u>Energy</u> Systems

Solve Using Energy Methods

- 1. The system to the right is released from rest. The instant the suspended mass (m₂=15.8278 kg) has fallen 10 meters, the blocks have speeds of 7 m/s.
 - a. How much GPE did the suspended mass "lose", the instance the suspended mass has fallen 10 meters?

- b. Where did the GPE "lost" go? Note: disregard air resistance.
- c. What is the KE of each block, the instant the suspended mass has fallen 10 meters?
- d. How much energy did the frictional force "take away" from the system (neg. work)?

e. How large is the frictional force?


f. What is the coefficient of friction?

Energy-KEY

Systems Solve Using Energy Methods

- 1. The system to the right is released from rest. The instance the suspended mass (m₂=15.8278 kg) has fallen 10 meters, the blocks have speeds of 7 m/s.
 - a. How much GPE did the suspended mass "lose", the instance the suspended mass has fallen 10 meters?

1,582.78 joules

b. Where did the GPE "lost" go? Note: disregard air resistance.

"lost" to both KE's, friction, and GPE

c. What is the KE of each block, the instance the suspended mass has fallen 10 meters?

block_{10kg}=245 joules

block_{15kg}=387.781 joules

d. How much energy did the frictional force "take away" from the system (neg. work)?

150 joules

e. How large is the frictional force?

15 N

f. What is the coefficient of friction?

W6.06c