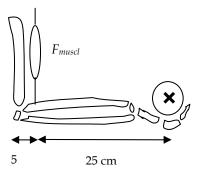

Energy

Simple Machines-Mechanical Advantage

- 1. The human forearm acts like a lever, with the muscle providing the input force and the load carried by the hand acting as the output force. A typical arm is shown.
 - a. What is the ideal mechanical advantage for the human arm?
 - b. Assuming that the arm is 100% efficient, with how much force must the bicep muscle pull so that the hand can lift a 5.0-kilogram object?



c. Why is the human arm designed with a mechanical advantage less than 1?

Energy-KEY

Simple Machines-Mechanical Advantage

- 1. The human forearm acts like a lever, with the muscle providing the input force and the load carried by the hand acting as the output force. A typical arm is shown.
 - a. What is the ideal mechanical advantage for the human arm?
 - b. Assuming that the arm is 100% efficient, with how much force must the bicep muscle pull so that the hand can lift a 5.0-kilogram object?

- c. Why is the human arm designed with a mechanical advantage less than 1?
- a. IMA = .1666 : 1 [5cm / 30 cm]
- b. $F_{bicep} = 300 \text{ newtons}$ [100% eff.---IMA = AMA = 1 : 0.1666]
- c. $\Delta s_{out} > \Delta s_{in}$ so large movement of hand verses small movement of muscle.