MOMENTUM

1. Venus Williams hits a $125 \mathrm{mph}(57.9 \mathrm{~m} / \mathrm{s})$ serve at Lindsay Davenport. Davenport rockets a $100 \mathrm{mph}(46.3 \mathrm{~m} / \mathrm{s})$ forehand past Williams for a clean winner. Assuming the ball has mass of 25 g and each impact lasts for 0.05 sec , calculate the average force exerted by
a. Williams' racket during the serve and
b. Davenport's racket during the return of serve.
2. A bullet with a mass of 0.050 kg and an initial velocity of $300 \mathrm{~m} / \mathrm{s}$ is shot horizontally at a $5-$ kg block suspended as shown above. The bullet imbeds in the block.

a. Calculate the velocity of the bullet-block system just after impact.
b. Calculate the kinetic energy of the bullet-block system just after impact.
c. Calculate the maximum height to which the bullet-block system swings.
3. A bullet with a velocity of $200 \mathrm{~m} / \mathrm{s}$ is shot at a $2-\mathrm{kg}$ block resting on a horizontal frictionless surface. The bullet imbeds in the block and the bullet-block system slides across the surface with a speed of $5 \mathrm{~m} / \mathrm{s}$.
a. Determine the mass of the bullet.

The bullet-block system continues to slide until it encounters a rough $(\mu \neq 0)$ horizontal surface. If the bullet-block combination comes to rest after sliding an additional $2.5-\mathrm{m}$, determine
b. the coefficient of friction between the rough surface and the block.
c. the time it takes the bullet-block combination to come to rest (after it comes into contact with the rough surface).
4. A 4-kg block slides on a frictionless surface at $40 \mathrm{~m} / \mathrm{s}$ toward a $6-\mathrm{kg}$ block (with a massless sponge attached) initially at rest. The force that the $4-\mathrm{kg}$ block exerts on the $6-\mathrm{kg}$ block is plotted below.

a. What is the total impulse of the $4-\mathrm{kg}$ block on the $6-\mathrm{kg}$ block?
b. Sketch the plot of the force of the $6-\mathrm{kg}$ block on the $4-\mathrm{kg}$ block (vs. time).
c. Find the speed of the $6-\mathrm{kg}$ block after the collision.
d. Find the speed of the $4-\mathrm{kg}$ block after the collision.
e. How much energy is lost or gained during the collision?
5. A $1-\mathrm{kg}$ air hockey puck traveling at $2 \mathrm{~m} / \mathrm{s}$ collides with a $2-\mathrm{kg}$ puck. The two pucks move off after the collision as indicated in the diagram below. Determine the final velocity of each puck.

Before
After

KEY-W7.07

1. a. 29 N
b. $\quad 52.1 \mathrm{~N}$
2. a. $\quad 2.97 \mathrm{~m} / \mathrm{s}$
b. $\quad 22.3 \mathrm{~J}$
c. $\quad 0.44 \mathrm{~m}$
3. a. 0.0513 kg
b. $\quad \mu=0.5$
c. $t=1$ second
4. a. $180 \mathrm{~N} \cdot \mathrm{~s}$
b. Equal and opposite to plot shown (by $3^{\text {rd }}$ Law)
c. $\quad 30 \mathrm{~m} / \mathrm{s}$
d. $\quad-5 \mathrm{~m} / \mathrm{s}$
e. $\quad-450 \mathrm{~J}$
5. $\quad \mathrm{V}_{1 \mathrm{~kg}}=1.6 \mathrm{~m} / \mathrm{s} ; \mathrm{V}_{2 \mathrm{~kg}}=0.6 \mathrm{~m} / \mathrm{s}$
