W11.01

Resistor Circuits 1

- 1. I is 2 amps and V is 6 volts.
 - a. What is *R*?
 - b. If the resistance was halved, what would happen to the current?
 - c. If the voltage of the battery was tripled, what would happen to the current?
 - d. How many junctions are in this circuit?

- 2. V is 12 volts, R_1 is 2 Ω , and R_2 is 1 Ω .
 - a. How much does potential drop from a to b?
 - b. How much does potential drop from b to c?
 - c. What is the current through the battery?
 - d. What is the current through R_1 ?
 - e. If R_1 and R_2 were bulbs, which would be brighter?

- 3. V is 12 volts, R_1 is 2 Ω , and R_2 is 1 Ω .
 - a. How much does potential drop from a to b?
 - b. How much does potential drop from c to c?
 - c. What is the current through R_1 ?
 - d. What is the current through R_2 ?
 - e. What is the current through the battery?
 - f. How many junctions are in this circuit?
 - g. How many branches are in the circuit?
 - h. If R_1 and R_2 were bulbs, which would be brighter?

- 4. V is 24 volts, R_1 is 3 Ω , R_2 is 12 Ω , and R_3 is 4 Ω .
 - a. Find the current through each resistor.
 - b. Find the potential drop across each resistor.
 - c. Find the total current flow through the battery.

- 5. V is 24 volts, R_1 is 4 Ω , R_2 is 9 Ω , and R_3 is 3 Ω .
 - a. Find the current through each resistor.
 - b. Find the potential drop across each resistor.
 - c. Find the total current flow through the battery.

