W11.01

1. I is 2 amps and V is 6 volts.
a. What is R ?
b. If the resistance was halved, what would happen to the current?
c. If the voltage of the battery was tripled, what would happen to the current?
d. How many junctions are in this circuit?

2. V is 12 volts, R_{I} is 2Ω, and R_{2} is 1Ω.
a. How much does potential drop from a to b ?
b. How much does potential drop from b to c ?
c. What is the current through the battery?
d. What is the current through R_{I} ?
e. If R_{1} and R_{2} were bulbs, which would be brighter?
3. V is 12 volts, R_{I} is 2Ω, and R_{2} is 1Ω.
a. How much does potential drop from a to b ?
b. How much does potential drop from c to c ?
c. What is the current through R_{l} ?
d. What is the current through R_{2} ?
e. What is the current through the battery?
f. How many junctions are in this circuit?
g. How many branches are in the circuit?
h. If R_{1} and R_{2} were bulbs, which would be brighter?

4. V is 24 volts, R_{l} is $3 \Omega, R_{2}$ is 12Ω, and R_{3} is 4Ω.
a. Find the current through each resistor.
b. Find the potential drop across each resistor.
c. Find the total current flow through the battery.

5. V is 24 volts, R_{I} is $4 \Omega, R_{2}$ is 9Ω, and R_{3} is 3Ω.
a. Find the current through each resistor.
b. Find the potential drop across each resistor.
c. Find the total current flow through the battery.

