W11.04

Other Topics in Circuits

Resistivity

- 1. A 10-gauge wire has a cross sectional area of 5.0 mm². Copper has a resistivity of $1.69 \times 10^{-8} \Omega$ ·m. What is the resistance of 2 km of solid 10-gauge copper wire?
- 2. A conducting wire had a diameter of 1.0 mm, a 2.0 m length, and a 50 m Ω resistance. What is the resistivity of the material?
- 3. Silicon is a semi conductor with a resistivity of $2.5 \times 10^3 \ \Omega \cdot m$ in its pure state. How long is a 4.0-mm diameter, cylindrical resistor of pure silicon with a resistance of 1 M Ω ?
- 4. We generally neglect the potential difference along wires and the transfer of energy to thermal energy in them. Check the validity of this using a simple, single loop circuit with an idea battery of emf $\mathcal{E} = 12.0$ V and a resistor $R = 6.00 \Omega$ connected by 20.0-cm copper wires with a radius of 1.00 mm.
 - a. What is the potential difference across the resistor?
 - b. What is the potential difference across each of the two wire segments?
 - c. At what rate is energy lost as thermal energy in the resistor?
 - d. At what rate is energy lost as thermal energy in the wire segments?

EMF and terminal voltage

- 5. A battery with emf $\boldsymbol{\varepsilon}$ of 12.0 V delivers a current of 0.10 A when connected to a 100 Ω resistor.
 - a. What is the terminal voltage of the battery?
 - b. What is the internal resistance of the battery?
 - c. By what percentage does the output power differ from the ideal 12-V battery with no internal resistance?
- 6. A wire of resistance 5.0 Ω is connected to a battery with an emf \mathcal{E} of 2.0 V and an internal resistance of 1.0 Ω . In 2.0 min, how much energy is
 - a. transferred from chemical form in the battery,
 - b. dissipated as thermal energy in the wire, and
 - c. dissipated as thermal energy in the battery?

Household circuits, Fuses, and Circuit Breakers

- 7. Are household circuits wired in series or parallel? Explain via an example how you know this.
- 8. An electrical circuit is designed to be used with a 200 V, 15 kW electric motor. The motor is to be protected from surges with a fuse. What is the fuse rating necessary for normal operation?
- 9. A two-slot toaster draws 720 W of power. How many toasters can be used simultaneously on a circuit with a 20-A circuit breaker without tripping the breaker?

11.04 Key

- 1. 6.76 Ω
- 2. $1.96 x 10^{-8} \Omega \cdot m$
- 3. $5 \times 10^{-3} \text{ m} (5 \text{ mm})$
- 4. $R_{\text{wire}} = 1.076 \times 10^{-3} \Omega \rightarrow I = 1.9993 \text{ A} \text{ (would be 2 neglecting wires)}$
 - a. 11.996 V
 - b. 0.00215 V (each)
 - c. 23.983 W
 - d. 0.0043 W (each)
- 5. a. 10 V
 - b. 20 Ω
 - c. (1 W 1.44 W)/(1.44 W) = -30.6 %
- 6. a. 80 J
 - b. 66.7 J
 - c. 13.3 J
- 7. parallel, if a lightbulb burns out, other lights on the circuit do not go out, or something similar.
- 8. 75 A
- 9. 3 toasters