ANSWER KEY Practice problems:

1. Growing up in the Washington D.C. area, my favorite radio station was D.C. 101 which broadcasts on a frequency of 101.1 MHz. (hint M = mega = 1×10^6)

```
a. Find the wavelength \lambda = (3 \times 10^8 \text{ m/s}) / (101.1 \times 10^6 \text{ Hz}) = 2.97 \text{ m}
b. Find the energy E = h \nu = (6.63 \times 10^{-34} \text{ J*sec}) (101.1 \times 10^6 \text{ Hz}) = 670.293 \times 10^{-28} \text{ J or } 6.703 \times 10^{-28} \text{ J}
```

- 2. Find the wavelength and energy of your favorite radio station.
- 3. What is the energy of light with a frequency of 4.31×10^{14} Hz?

```
E = h v
= (6.63 \times 10^{-34} \text{ J*sec}) (4.31 \times 10^{14} \text{ Hz})
= 28.5753 \times 10^{-20} \text{ J or } 2.858 \times 10^{-21} \text{ J}
```

4. A certain violet light has a wavelength of 413 nm. What is the frequency of the light? (hint nano = nm = 1×10^{-9} meters)

```
v= c / \lambda
= (3.00 x 10<sup>8</sup> m/sec)/(4.13 x 10<sup>-7</sup> m)
= 7.26 x 10<sup>14</sup> sec<sup>-1</sup> or Hz
```

5. A certain green light has a frequency of 6.26×10^{14} Hz. What is the wavelength?

```
\lambda = c / v
= (3.00 x 10<sup>8</sup> m/s)/(6.26 x 10<sup>14</sup>Hz)
= 4.79 x 10<sup>-5</sup> m
```

6. What is the energy of light with a wavelength of 662 nm?

```
E = hc / \lambda

E = [(6.63 x 10<sup>-34</sup> J*sec)(3 x 10<sup>8</sup> m/s)]/(6.62 x 10<sup>-7</sup> m)

= 3.00 x 10<sup>-19</sup> Joules
```