Name:	Se	ection:
_		

1. Calculate the atomic mass for lithium given the following data for its naturally occurring isotopes.

```
Element Isotopic Mass % Abundance

<sup>6</sup>Li 6.015 amu 7.42%

<sup>7</sup>Li 7.016 amu 92.58%

[(6.015*0.0742) + (7.016*0.9258)] = average atomic mass

0.446313 + 6.4954128 = 6.9417258 amu

~ 6.941 amu
```

2. Calculate the atomic mass for magnesium given the following data for its naturally occurring isotopes.

```
<sup>24</sup>Mg 23.985 amu 78.70%

<sup>25</sup>Mg 24.986 amu 10.13%

<sup>26</sup>Mg 25.983 amu 11.17%

[(23.985*0.7870) + (24.986*0.1013) + (25.983*0.1117)] = 18.87619 + 2.5310818 + 2.9023011 = 24.3095779 amu
\sim 24.309 amu
```

3. Calculate the atomic mass for iron given the following data for its naturally occurring isotopes.

```
<sup>54</sup>Fe
                                       5.82%
           53.940 amu
<sup>56</sup>Fe
            55.935 amu
                                       91.66%
<sup>57</sup>Fe
           56.935 amu
                                       2.19%
<sup>58</sup>Fe
           57.933 amu
                                       0.33%
[(53.940*0.0582) + (55.935*0.9166) + (56.935*0.0219) +
(57.933*0.0028)] =
3.139308 + 51.270021 + 1.2468765 + 0.1911789 =
55.8473844 amu
 ~ 55.847 amu
```

4. Chlorine has two naturally occurring isotopes: ³⁵Cl and ³⁷Cl. Which isotope is more abundant if the stated atomic mass of chlorine is 35.35 amu?

The atomic mass of ^{35}Cl is closer to the average atomic mass of chlorine than ^{37}Cl .