Algebra 3 Assignment # 9

(1) Use a calculator to solve each of the following correct to 4 decimal places please.

- (a) $5^x = 20$ (b) $4^{3x+1} = 9^{1-x}$
- (c) $\log_3(18) = x$ (d) $\log_7(x) = 1.432$
- (e) $\ln(x) = 1.432$ (f) $5^{\log_3(x)} = 11$
- (g) $0.3^{x} > 7$ (h) $2(\ln(x))^{2} 5\ln(x) 3 = 0$

(2) Let $\log_{10}(2) = p$ and $\log_{10}(3) = q$. Evaluate each of the following in terms of p and q.

- (a) $\log_{10}(6)$ (b) $\log_{10}(72)$ (c) $\log_{10}\left(\frac{3\sqrt{3}}{\sqrt[5]{16}}\right)$ (d) $\log_{10}(90)$ (e) $\log_{10}(0.5)$ (f) $\log_{10}(5)$
- (3) Simplify the following expression please.

$$\log_4(125) \cdot \log_{49}(32) \cdot \log_{25}(7)$$

(4) The magnitude of an earthquake is measured using the Richter scale;

$$M = \frac{2}{3} \log \left(\frac{E}{10^{4.4}} \right),$$

Where M is the magnitude of the earthquake, and E is the seismic energy released by the earthquake (in joules). The 1989 San Francisco earthquake released approximately 1.12×10^{15} joules. Calculate the magnitude of the earthquake using the Richter scale. How much energy would be released (in joules) by an earthquake which measures 8.3 on the Richter scale?

Algebra 3 Assignment # 9 Answers

(1)	(a) 1.8614	(b) 0.1276
	(c) 2.6309	(d) 16.2248
	(e) 4.1871	(f) 5.1388
	(g) x < −1.6162	(h) 0.6065, 20.0855

(2) (a)
$$p + q$$
 (b) $3p + 2q$

(c)
$$\frac{3}{2}q - \frac{4}{5}p$$
 (d) $2q+1$

(e)
$$-p$$
 (f) $1-p$

(3) $\frac{15}{8}$

(4) 7.1, 7.079 x 10^{16} joules