Hints Final Exam

1. Sides of a 30/60/90 Triangle are $x, x\sqrt{3}, 2x$

Sides of a 45/45/90 triangle are $x, x, x\sqrt{2}$

2. When solving trigonometric equations (the final section of the final exam), NEVER divide both sides by a trig function.

3. Hyperbola is (-) and ellipse is a (+) between. Both have fractions in the equation.

- 4. Tangent formulas: $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ 5. With an ellipse, a > b and $a^2 - b^2 = c^2$ With a hyperbola, $a^2 + b^2 = c^2$ and a is always the positive term. 6. $\sin^2 x + \cos^2 x = 1$ $1 + \tan^2 x = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$ 7. $\frac{(x-h)^2}{r^2} - \frac{(y-k)^2}{h^2} = 1$ for a horizontal traverse axis. 8. for $\sin^{-1}x$, $\tan^{-1}x$, $\csc^{-1}x - \frac{\pi}{2} \le y \le \frac{\pi}{2}$ for $\cos^{-1}x$, $\cot^{-1}x$, $\sec^{-1}x \quad 0 \le y \le \pi$ 9. Tangent lines are perpendicular to the radius of the circle; $m_{tan} = -\frac{1}{m_{tan}}$ 10. $\cos 2x = \cos^2 x - \sin^2 x$ $\sin 2x = 2 \sin x \cos x$ $\tan 2x = \frac{2\tan x}{1-\tan^2 x}$ 11. $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$
- 12. Change of base rule: $\log_b M = \frac{\log_c M}{\log_c b}$

13. When given the slopes of the asymptotes of a hyperbola, you can find a or b by cross multiplying. For tree trunk, slope = $\pm \frac{b}{a}$; for happy/sad slope = $\pm \frac{a}{b}$

Example: Asymptotes
$$= \pm 2$$
.

$$\frac{b}{a} = \frac{2}{1} \rightarrow b = 2a \rightarrow a^{2} + b^{2} = c^{2}$$

$$a^{2} + (2a)^{2} = c^{2}$$

$$5a^{2} = c^{2}$$
14. central $\angle = \frac{\text{arc length}}{\text{central } \angle}; \quad A_{\text{sector}} = \frac{r^{2}\theta}{2}$
15. cos $2a = 1 - 2\sin^{2} A$
16. Sin is positive in the 1st and 2nd Quadrants.

17.
$$\log_b M^p = p \log_b M$$

18. Remember that when graphing ellipses a is bigger than b. If the a is under the x then the shape (ellipse) is larger on the x axis and if the a is under the y then the shape is longer on the y axis.

19. Trig graphing: Don't forget asymptotes tan, cot, sec, csc

20. When you have crazy logs in an equation, remember to check if you can substitute one variable for the log term:

$$4(\log_{81} x)^{2} + 3(\log_{81} x) - 1 = 0$$

$$4A^{2} + 3A - 1 = 0$$

$$(4A - 1)(A + 1)$$

$$A = \frac{1}{4}; A = -1$$

$$\log_{81} x = \frac{1}{4}; \log_{81} x = -1$$

$$x = 3; x = \frac{1}{81}$$

21. for $\sin^{-1}x$, $\tan^{-1}x$, $\csc^{-1}x + in Q1$; - in QIV for $\cos^{-1}x$, $\cot^{-1}x$, $\sec^{-1}x + in Q1$; - in QII

- 22. $A^{\log_A x} = x$ (make sure the "A"s match!)
- 22. Law of Cosines
 - $a^2 = b^2 + c^2 2bc\cos A$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos \theta$$

Use with non-right SSS and SAS triangles

- 23. For inverse functions, only give 1 answer!!!! (the closest to 0)
- 24. If no base is given for logs, it is base 10.

25. Remember to label conic graphs completely and be careful with +/- signs in the conic formulas and identities.

26. Width points are the distance of 4c in a parabola

27. Half Angle Formulas

$$\cos\left(\frac{1}{2}A\right) = \sqrt{\frac{1+\cos A}{2}}$$
$$\sin\left(\frac{1}{2}A\right) = \sqrt{\frac{1-\cos A}{2}}$$

28. $lob_{b}b^{x} = x;$

29.
$$A_{\Delta} = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{s}ab\sin C$$

- 30. $f \circ g = f(g(x))$ First find g(x) then find f of that number
- 31. $\log_x x = 1$
- 32. $\log_b M \log_b N = \log_b \frac{M}{N}$

33. When doing inverse trig, the first step is to draw the reference triangle for the given angle, then work from there.

34. Finding an inverse $f^{-1}(x)$ put in a y, then replace all y's with an x and all x's with a y and solve for y.

35. Evaluate a log if possible: $\log_2 16$ is 4.

36. Don't forget you can do angle addition, subtraction, half angle to find things like sin 105.