4.1 4.2 Congruency

Congruency:

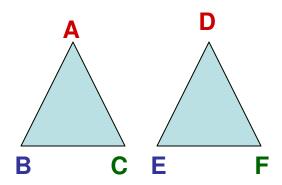
Congruent figures _____

•

If $\triangle ABC \cong \triangle DEF$ then:

<u>Angles</u>

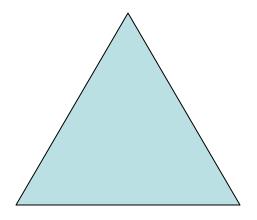
<u>Sides</u>

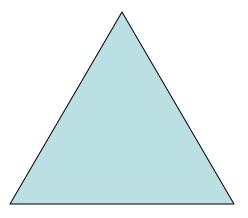


In a proof, if triangles are congruent and you plan to prove that corresponding pieces are congruent use:							

Reasons for Proving Triangles Congruent

Postulate 12:





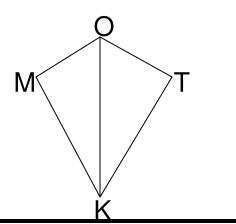
Postulat	e 13:	

Postulate	e 14:	

Given: OK bisects ∠MOT

 $\overline{OM} \cong \overline{OT}$

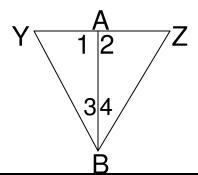
Prove : $\angle MKO \cong \angle TKO$



Given: $\overline{BA} \perp \overline{YZ}$

 \overline{BA} bisects $\angle YBZ$

Prove : $\overline{BY} \cong \overline{BZ}$

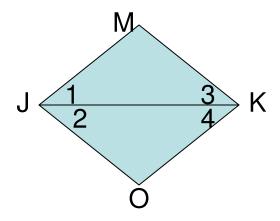


Proving other Congruencies

Given: $\overline{MK} \cong \overline{KO}$

KJ bisects ∠MKO

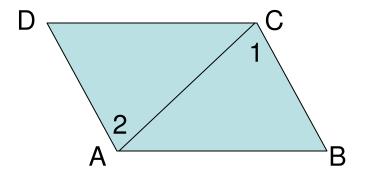
Prove: *KJ* bisects ∠MJO



Given : $\overline{AD} \parallel \overline{BC}$

 $\overline{\mathrm{AD}}\cong \overline{BC}$

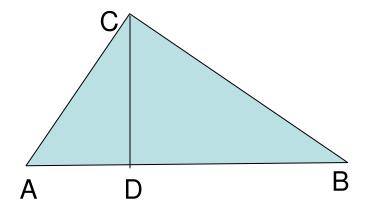
Prove : $\overline{AB} \cong \overline{CD}$



Given: $\overline{\text{CD}} \perp \overline{AB}$

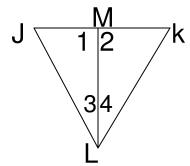
D midpoint AB

Prove : $\overline{CA} \cong \overline{CB}$



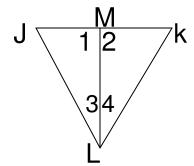
Given: $\angle 1 \cong \angle 2; \angle 3 \cong \angle 4$

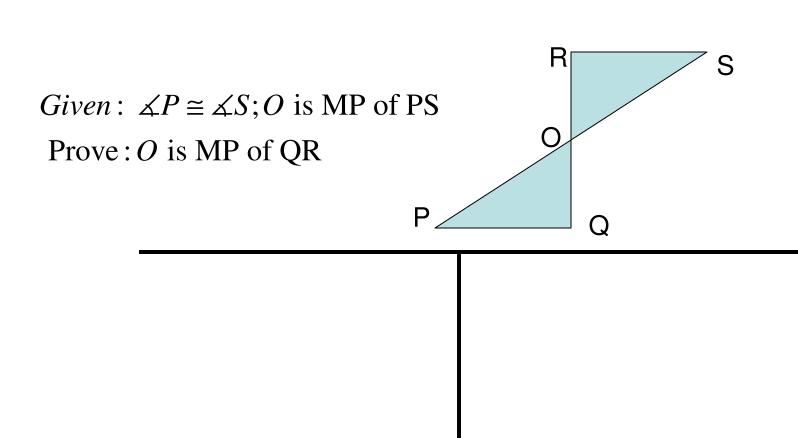
Prove: *M* is midpoint of JK



Given: $\angle 1 \cong \angle 2; \angle 3 \cong \angle 4$

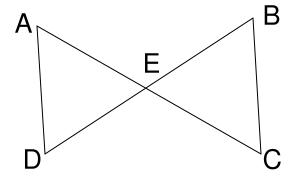
Prove: $\triangle JKL$ is Isosceles





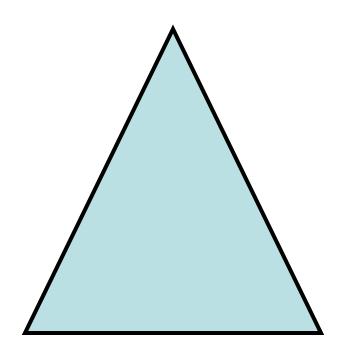
Given: $\overline{AE} \cong \overline{BE}; \overline{DE} \cong \overline{CE}$

Prove : $\angle D \cong \angle C$



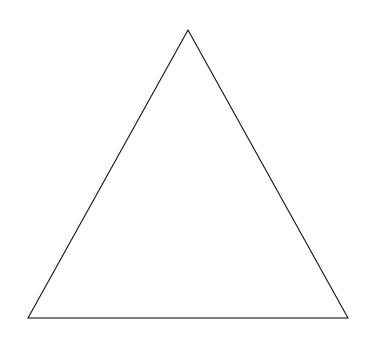
Isosceles Triangles

Lets draw an Isosceles Triangle

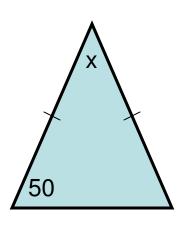


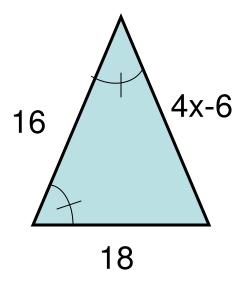
Def of Isosceles Triangle:
•
Theorem 4-1:
Theorem 4-2:

Corollary 2:			



Examples:



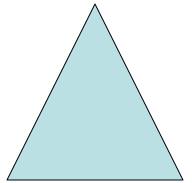


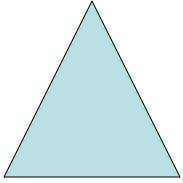
X=_

Triangles Congruent

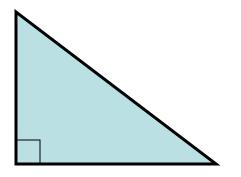
More Ways to Prove Triangles Congruent

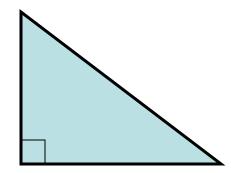
Theorem 4.3:



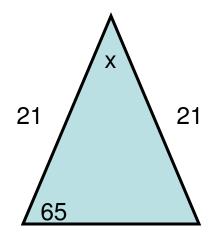


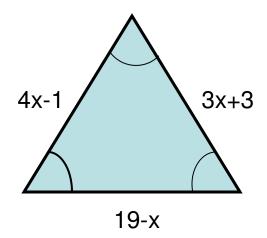
Theorem 4	.4:		

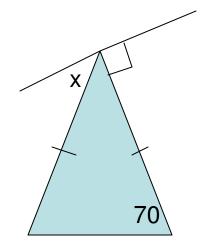


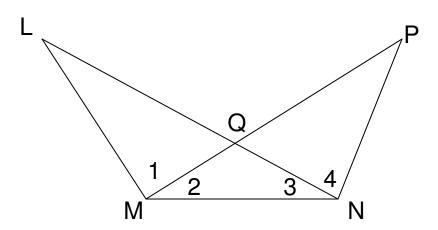


Examples:





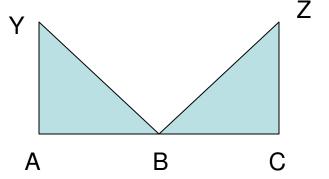




If $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ Name 2 sets of \triangle 's that are \cong

Given: $\overline{YA} \perp \overline{AC}$; $\overline{ZC} \perp \overline{AC}$ B is Midpoint of \overline{AC} $\overline{YB} \cong \overline{ZB}$

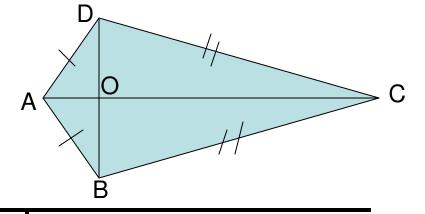
Prove : $\angle ABY \cong \angle CBZ$



Proving More than one set of Triangles Congruent

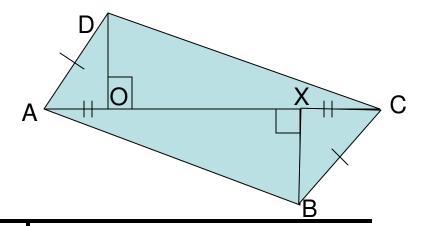
Given: Marked

Prove: O is Midpoint of \overline{DB}



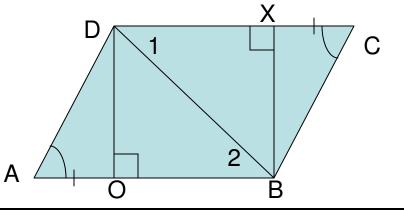
Given: Marked

Prove : $\overline{DC} \cong \overline{AB}$



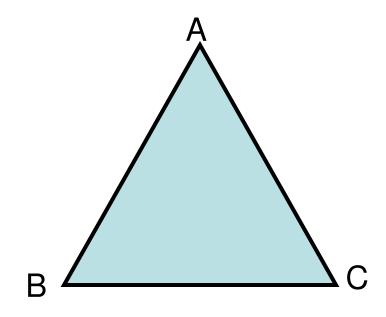
Given: Marked

Prove : $\overline{DC} \parallel \overline{AB}$

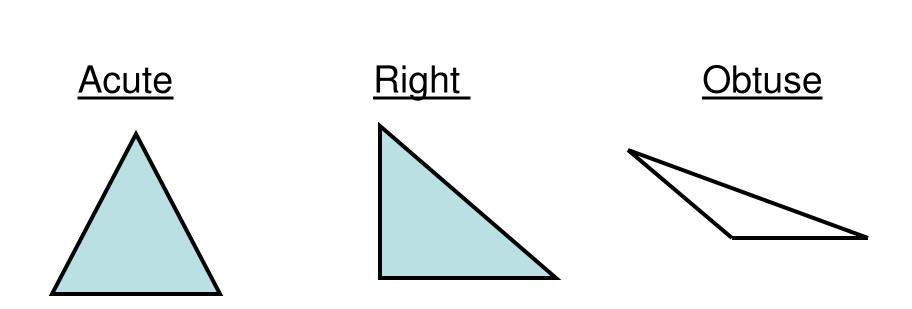


Altitude, Median and Perpendicular Bisector

Median: _		

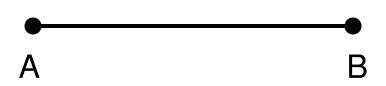


Altitude:		
•		

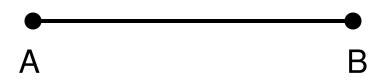


Perpendicular Bisector _	

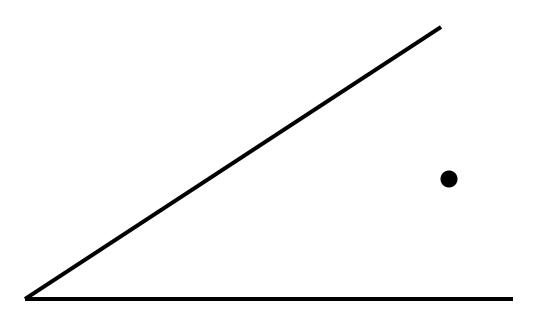
PBT			
	C		



CPBT					



Theorem 4.7:		



Given: $\angle D \cong \angle B$; $\angle BCO \cong \angle DCO$

Prove: OC is the median of $\triangle DBC$

