5.1

Quadrilaterals

Parallelogram:	

More Parallelogram Characteristics

Theorem 5.1:	

Theorem 5.2:

Theorem 5.3:_____

Examples

$$b = \underline{\hspace{1cm}}$$

$$x =$$

3. Find the perimeter of parallelogram PINE if PI=12 and IN=8.

4. *Given* : □ABCD and □CEFG

Prove: $\angle A \cong \angle F$

- 1.Given
- 2. Opp \measuredangle 's \cong
- 3. Transitive

6.

7.

True or False:

- 1. Every parallelogram is a quadrilateral?
- 2. Every Quad is a parallelogram?
- 3. All angles of a parallelogram are congruent?
- 4. All sides of a parallelogram are congruent?
- 5. In RSTU, RS is parallel to TU?
- 6. In XWYZ, XY=WZ?
- 7. In \bigcirc ABCD, if angle A=50, then C=130?

5.2

Proving Parallelograms

Ways to Prove Quadrilaterals are Parallelograms
Theorem 5.4:
Theorem 5.5:
Theorem 5.6:

Theorem 5.7: ______

5 ways to prove a quad is a Parallelogram

1.

2

3.

4.

5.

 $Given: \overline{AD} \parallel \overline{BC}; BE=DE$

Prove: ABCD is a \square

1. *Given*

Given : $\Box ABCD$;

CF bisects ∠BCD

AE bisects ∠BAD

Prove : $\overline{AE} \cong \overline{CF}$

1.

1. Given

Given: $\triangle AECF$; $\angle 9 \cong \angle 10$ Prove: $\triangle ABCD$ is a $\triangle D$ D

ABCD

ABC

1. Here are the Reasons

1. Given

5.3

Parallel Lines

Theorems involving Parallel Lines

Theorem 5.8:

Theorem 5.9:

Theorem 5.10: ______

Theorem 5.11:

	AB	ВС	AC	ST	TR	RS
a)	12	14	18			
b)		15	22			10
c)				5	9	6

- 1. If RS=12 then ST=____
- 2. If AB=8 then BC=____
- 3. If AC=20 then AB=_____
- 4. If AC=10x then BC=____

	AB	ВС	AC	XY	XZ	ZY
a)	K		24		2k+3	
b)	9	8	6			

5.4

Special Parallelograms

Special Parallelograms

Rectangle:		
Rhombus:		
Square:		

Theorems for Special Parallelograms

Theorem 5.12:	_
Theorem 5.13:	_
Theorem 5.14:	

Theorem 5.15: ______

Proving a Rhombus or Rectangle

Theorem 5.16:		
Theorem 5.17:		
Theorem 5.17:		

Property	Parallelogram	Rect.	Rhombus	Square
Opp sides ≅				
Opp sides				
Opp ∡'s ≅				
Diag form ≅△				
Diag bisect				
Diag ≅				
Diag ⊥				
Diag bisect 2∡'s				
All Rt ∡'s				
All sides ≅				

Examples:

ABCD is a Rhombus

$$\angle ABC = \underline{}$$

MNOP is a Rectangle

$$\overline{PL} = \underline{\hspace{1cm}}$$

$$\overline{MO} =$$

$$\angle 2 \cong \angle 3$$
; Find $\angle 1 = \underline{}$

YW=3x-2; WZ=x+8; Find YZ=_____

5.5

Trapezoids

Warmup: Always, Nev	ver or Sometimes
1. A square is	_ a rhombus.
2. The diagonals of a posterior bisect the angles of	
3. The diagonals of a rl congruent.	hombus are
4. A rectangle congruent.	has consecutive sides
5. The diagonals of a p perpend other	arallelogram are icular bisectors of each

Trapezoids

Trapezoid:	
•	
	<u> </u>
Isosceles Trapezoid	

Trapezoid Theorems

Theorem 5.18:_____

Theorem 5.19:

Solve: AB=10; DC=12

- 1. If AB=25, DC=13 then EF=_____
- 2. If AE=11, FB=8 then AD=_____ BC=____
- 3. If AB=29 and EF=24 then DC=_____
- 4. If AB=7y+6, EF=5y-3, and DC=y-5 then y=___

Find x=____

y=____

Quad TUNE is an isosiceles trapezoid with TU and NE as bases. If angle U equals 62 degrees find the measures of the other 3 angles.