6.1 Inequalities and Indirect Proofs

Up until now we have dealt with si	ides
and angles that are	and
have used the properties of	
in our proofs.	

Now we will deal with _____ sides and angles. We will be using properties of ____.

Property of Inequality (All of these)

Exterior Angle Theorem:

Given: AC > BC; CE > CD

Prove : AE > BD

Given: ∠1 is and exterior angle

Prove: $\angle 1 > \angle D$; $\angle 1 > \angle E$

Given : ∠2>∠1

Prove: $\angle 2 > \angle 4$

6.3 Indirect Proof

We will be using		
	_	
Lets look at an example.		

Lets suppose after walking home, Joe enters the house carrying a dry umbrella. You can conclude that it is not raining outside. Why?

Steps for solving an Indirect Proof:

•			
•			
•			

Lets try one, these will be written as a paragragh.

Given: SRQP is a trapezoid

Prove: $PQ \neq SR$

6.4

Inequalities

Inequalities for one Triangle

Theorem 6.2:		
Theorem 6.3:		

List angles from Largest to smallest:

List sides from Largest to smallest:

Corollary 1:	
Theorem 6.4:	

When given 2 sides of a triangle you can find a range that the third side will be between.

•_____

10,12,____

25, 26, _____

y, y + 2,_____

Find out if each is a triangle, given the sides:

- 1. 6,8,20
- 2. 2.5, 5, 4.1
- 3. 3, 4, 5
- 4. 6, 4, 2
- 5. 6, 5, 6

Which side is the longest?

6.5 Inequalities for 2 Triangles

Theorem 6-5: SAS Inequality

Theorem 6-5: SSS Inequality

Example:

Given: $RS \cong RT$; $\angle 1 > \angle 2$

• R 1 2 T

Example:

Given: Marked on Drawing

Example:

Given: Marked on Drawing

What can you deduce?

10