2.2 Proof Properties

Memorize these ASAP!

Pro	perties	of	Eq	ual	ity
		•	— – I	-	<i>J</i>

Addition Property of Equality:	
Subtraction Property of Equality:	

Multiplication Prop. of Equality:

Division Property of Equality:
Substitution Property of Equality:
Reflexive Prop. of Equality:
Symetric Prop. of Equality:

Transitive Property of Equality:	
<u>Definition of Congruence:</u>	

Definition of a Midpoint:

Midpoint Theorem:

Definition of Angle Bisector:

Angle Bisector Theorem:

Vertal Angle Theorem (VAT):

Segment Addition Postulate (SAP):

Angle Addition Postulate (AAP):

Proof-			

We will now use all the theorems, postulates and properties we just defined to solve proofs.

Lets try a Algebra Proof first.

Given: 4x+3 = 2x - 9

Prove: x = -6

Given always first statement and reason!

Statements	Reasons

 $Given: \overline{AB} \cong \overline{DE}; \ \overline{BC} \cong \overline{EF}$

Prove : $\overline{AC} \cong \overline{DF}$

 $Given: \overline{AB} \cong \overline{CD}$

Prove : $\overline{AC} \cong \overline{BD}$

 $Given: \overline{AC} \cong \overline{BD}$

Prove : $\overline{AB} \cong \overline{CD}$

Have we noticed a pattern?

Parts to Whole (given pieces, asked to prove whole)

- •
- •
- •

Whole to Parts (given Whole, asked to prove parts)

- •
- •_____
- •_____

2.2 Proofs Continued

 $Given: \overline{GJ} \cong \overline{HK}$

Prove : $\overline{GH} \cong \overline{JK}$

 $Given: \measuredangle GHF \cong \measuredangle HGE; \measuredangle FHE \cong \measuredangle EGF$

Prove : $\angle GHE \cong \angle HGF$

 $Given: \overline{AC} \cong \overline{DF}; \overline{AB} \cong \overline{DE}$

Prove : $\overline{BC} \cong \overline{EF}$

Given: $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$

Prove : $\angle SRT \cong \angle STR$

 $Given: \overline{RP} \cong \overline{TQ}; \overline{PS} \cong \overline{QS}$

Prove : $\overline{RS} \cong \overline{TS}$

 $Given: \overline{RQ} \cong \overline{TP}; \overline{ZQ} \cong \overline{ZP}$

Prove : $\overline{RZ} \cong \overline{TZ}$

 $Given: \angle SRT \cong \angle STR; \angle 3 \cong \angle 4$

Prove: $\angle 1 \cong \angle 2$

Given: $m \angle 1 + m \angle 2 = 90$; $\angle 2 \cong \angle 3$

Prove: $m \angle 1 + m \angle 3 = 90$

Given: $\angle ABD \cong \angle DEA$; $\angle 1 \cong \angle 2$

Prove: $\angle 3 \cong \angle 4$

2.4 Vertical Angle Theorem

Lets Prove VAT

Given: None

Prove: $m \angle 1 = m \angle 2$

<u>VAT</u>-

Supplement and Complement:

 $m \measuredangle T = 40$

Supp=

Comp=

 $m \measuredangle T = 1$

Supp=

Comp=

 $m \measuredangle T = 4x$

Supp=

Comp=

Complete with Always, Sometimes or Never

- 1. Vertical angles have a common vertex?
- 2.2 right angles are _____complementary.
- 3. Right angles are _____ vertical angles.
- 4. Vertical angles_____ have a common supplement.

Lets Prove VAT

Given: $m \angle 2 = m \angle 3$

Prove: $m \angle 1 = m \angle 4$

2.5 Perpendicular Lines

Definition of Perpendicular Lines:

Theorem 2-4:

Definition of Complementary Angles					
Definition of Supplementary Angles					

Exterior Sides Theorem (EST):

True or False:

- 2. Angle CGA is a right angle?
- 3. Angle DGB is 90 degrees?
- 4. EGC and EGA are compliments?
- 5. DGF is complementary to DGA?
- 6. EGA is complementary to DGF

2.6 SAT and CAT

Supplementary Angle Theorem (SAT)							

Example: If 1 is supp to 2 and 2 is sup to 3
Then SAT says

Complementary Angle Theorem (CAT))

Example: If 1 is comp to 2 and 2 is comp to 3
Then CAT says

When to use?

•			
•			
•			
•			

Given: $\angle 1$ is supp to $\angle 2$;

 $\angle 3$ is supp to $\angle 4$

Prove: $\angle 1 \cong \angle 3$

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$

Given: $\angle 3$ is supp to $\angle 1$;

 $\measuredangle 4$ is supp to $\measuredangle 2$

Prove: $\angle 4 \cong \angle 3$

Given : $AC \perp CB$

 $\angle 3$ is comp to $\angle 1$

Prove: $\angle 2 \cong \angle 3$

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$

Given: $\angle 2$ is supp to $\angle 3$

Prove: $\angle 3 \cong \angle 1$

Given: $\angle 2 \cong \angle 4$

Prove: $\angle 2$ is supp to $\angle 3$

