(1) The circle with center O is inscribed in $\triangle ABC$. (2) \overrightarrow{CA} is tangent to the circle at A, sides as $AC \perp \overline{BC}$. **Find:** $AC_{\underline{\underline{\underline{}}}}$, $BC_{\underline{\underline{\underline{}}}}$ D marked. Find: AC____ (3) AB is an external tangent segment. Points O and P are the centers of the circles. Find: AB_ Ε \mathbf{C} (4) Concentric circles with center O, AC is tangent to the inner circle, sides as marked. **Find:** OB______, mADC _____ (5) Given the figure below, point O is the center the circle, $AC \perp BD$, BD = 26, AC = 24. **Find:** OE_____, DE_____, OC_____ (6) Given the figure below, $m\angle A = 30^{\circ}$, $m\angle CFD = 65^{\circ}$, BC = DE. Find: mCD____, mBE____, mBC____ (7) The circle below with center O, AC = 12, $\overline{AC} \perp \overline{BD}$. Find: OE_____, OC____DE____ (8) Given the figure below, DH = HF, with sides as marked. **Find:** GC_____, DH_____ ## **Answers** (1) $$AC = 6$$, $BC = 8$ **(2)** AC = $$6\sqrt{3}$$ (3) AB = $$4\sqrt{6}$$ **(4)** OB = 4, $$\widehat{\text{mADC}} = 240^{\circ}$$ (5) $$OE = 5$$, $DE = 8$, $OC = 13$ (6) $$\widehat{\text{mCD}} = 95^{\circ}$$, $\widehat{\text{mBE}} = 35^{\circ}$, $\widehat{\text{mBC}} = 115^{\circ}$ (7) OE = $$2\sqrt{3}$$, OC = $4\sqrt{3}$, DE = $2\sqrt{3}$ **(8)** GC = $$\frac{27}{4}$$, DH = $3\sqrt{3}$