Trigonometry

Lecture 16

1. Convert from degrees to radians

a) 220°

b) -150°

c) 3600°

2. Convert from radians to degrees

a) $\frac{4\pi}{3}$

b) 8π

3. Given x, find the six trigonometric functions associated with that x.

a) $\frac{4\pi}{3}$

b) 8π

c) $\frac{\pi}{4}$

e) $\frac{3\pi}{2}$

4. Given one trigonometric function, find the other five.

- a) $\sin x = \frac{3}{5}$ (x in quadrant 1) b) $\cos x = \frac{1}{3}$ (x in quadrant 4)
- c) tan x = 3 (x in quadrant 3) d) sec x = 2 (x in quadrant 1)

Identities

Lecture 16.5

Prove that the following equations are true by transforming one side into the other

$$(1) \frac{1}{1-\sin(\theta)} + \frac{1}{1+\sin(\theta)} = 2\sec^2(\theta)$$

(2)
$$\frac{\sin(x)}{\sin(x) + \cos(x)} = \frac{\tan(x)}{1 + \tan(x)}$$

(3)
$$\frac{\sin(x) + \cos(x)}{\sec(x) + \csc(x)} = \frac{\cos(x)}{\csc(x)}$$

(4)
$$\frac{\tan(\theta) + 1}{\tan(\theta) - 1} = \frac{1 + 2\sin(\theta)\cos(\theta)}{\sin^2(\theta) - \cos^2(\theta)}$$

(5)
$$\frac{\sin^2(\phi) + 2\cos(\phi) - 1}{\sin^2(\phi) + 3\cos(\phi) - 3} = \frac{1}{1 - \sec(\phi)}$$

(6)
$$\frac{\cos^2(x) + 3\sin(x) - 1}{\cos^2(x) + 2\sin(x) + 2} = \frac{1}{1 + \csc(x)}$$

(7)
$$\frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)} = \frac{\cot(x) + \cot(y)}{\cot(x)\cot(y) - 1}$$

Lecture 17

Addition Formulas

Evaluate the following:

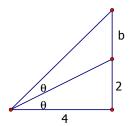
- 1. sin 75°
- 2. cos 75°
- 3. tan 75°, using the formula.
- 4. tan 75°, using your answers from problem 1 and 2. Is this the same answer as you got in problem 3? How can you tell??
- 4. sin 345°
- 5. cos 195°
- 6. $\sin 32^{\circ} \cos 238^{\circ} + \cos 32^{\circ} \sin 238^{\circ}$

7.
$$\frac{\tan\frac{\pi}{16} + \tan\frac{3\pi}{16}}{1 - \tan\frac{\pi}{16}\tan\frac{3\pi}{16}}$$

8. Using your calculator, confirm that $\sin^2 75^\circ + \cos^2 75^\circ = 1$. How could you prove to anyone that is true without a calculator?

Verify the following

9.
$$\sin(270^{\circ} - x) = -\cos x$$


10.
$$\sin(x + y)\sin(x - y) = \sin^2 x \cos^2 y - \sin^2 y \cos^2 x$$

11.
$$\sin\left(\theta + \frac{\pi}{3}\right) - \cos\left(\theta + \frac{\pi}{6}\right) = \sin\theta$$

Double and Half Angle

Lecture 18

- 1. Suppose x is in Quadrant 2 and $\sin x = \frac{3}{5}$. Find $\sin 2x$, $\cos 2x$ and $\tan 2x$.
- 2. Given the picture as drawn, find b:

- 3. Suppose x is in quadrant 4 and $\cos x = \frac{2}{3}$. Find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$.
- 4. Find sin112.5° and cos112.5°.

Verify the following identities:

5.
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$

6.
$$\cos^2 2x + 4 \sin^2 x \cos^2 x = 1$$